Tesseract: Real-time cryptocurrency exchange using trusted hardware

Abstract

We propose Tesseract, a secure real-time cryptocurrency exchange service. Existing centralized exchange designs are vulnerable to theft of funds, while decentralized exchanges cannot offer real-time cross-chain trades. All currently deployed exchanges are also vulnerable to frontrunning attacks. Tesseract overcomes these flaws and achieves a best-of-both-worlds design by using a trusted execution environment. The task of committing the recent trade data to independent cryptocurrency systems presents an all-or-nothing fairness problem, to which we present ideal theoretical solutions, as well as practical solutions. Tesseract supports not only real-time cross-chain cryptocurrency trades, but also secure tokenization of assets pegged to cryptocurrencies. For instance, Tesseract-tokenized bitcoins can circulate on the Ethereum blockchain for use in smart contracts. We provide a demo implementation of Tesseract that supports Bitcoin, Ethereum, and similar cryptocurrencies.

Publication
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security
Yan Ji
Yan Ji
PhD student in Computer Science

My research interests span blockchains, security and privacy, applied cryptography and distributed systems.